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Abstract

We have developed an adaptive grid-refinement approach for simulating geophysical flows on scales from micro to

planetary. Our model is nonoscillatory forward-in-time (NFT), nonhydrostatic, and anelastic. The major focus in this

effort to date has been the design of a generalized mathematical framework for the implementation of deformable

coordinates and its efficient numerical coding in a generic Eulerian/semi-Lagrangian NFT format. The key prerequisite

of the adaptive grid is a time-dependent coordinate transformation, implemented rigorously throughout the governing

equations of the model. The transformation enables mesh refinement indirectly via dynamic change of the metric co-

efficients, while retaining advantages of Cartesian mesh calculations (speed, low memory requirements, and accuracy)

conducted fully in the computational domain. Diverse test results presented in this paper – simulations of a traveling

stratospheric inertio-gravity-wave packet (with numerically advected dense-mesh region) and an idealized climate of the

Earth (with analytically prescribed adaptive transformations) – demonstrate the potential and the efficacy of the new

deformable grid model for tracing targeted flow features and dynamically adjusting to prescribed undulations of model

boundaries.

� 2003 Elsevier Science B.V. All rights reserved.
1. Introduction

Astonishing progress in numerical methods and computer hardware during the past two decades have

finally made realistic (3D transient) simulations of atmospheres and oceans feasible. However, inadequacies

of boundary and initial conditions, grid resolution, and subgrid-scale physical parameterizations, still limit

the accuracy obtainable with the available resources. A typical example is that of tropical storm forecasting:

although steady progress has been made in the past 10 years in forecasting storm tracks (primarily due to

improved data assimilation, [2]) other statistics, such as storm intensity, structure, and size, remain poorly

predicted. The latest high-resolution hurricane simulations hint that it may be necessary to implement
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global models 1 with mesoscale resolution, in order to significantly improve upon current tropical storm

forecasts beyond one to two days. Global models with resolutions �10 km – a scale that just barely begins

to resolve structure like the hurricane eye and rainbands – are still beyond the state of the art (several times

in terms of the computational effort) using advanced solvers and massively parallel computer technologies.

Even higher resolutions of �1 km – necessary to fully resolve these features – would require another �1000-

fold increase in computational power.

In this paper, we outline a generalization of a coordinate transformation technique whereby the gov-

erning equations for the problem at hand are mapped into a transformed, or computational domain St,
which is both regular and stationary. Obvious advantages over solving the problem in the original physical

domain, Sp, are that: (i) irregular and time variable boundaries may be rigorously accommodated, and (ii)

grid clustering in selected regions of interest may be naturally implemented. 2

Analytical coordinate transformations have been used for over a century in continuous media, to

simplify domains or extend known solutions. The explicit use of similarity transformations to solve phase

change problems date back at least to Boltzmann in 1894 [3]; and the use of conformal mappings to solve

problems in heat and potential fluid flow were on a solid basis by the end of the 19th century. In 1938,

Prandtl [28] used an elementary translation of the boundary layer coordinate to transform the flat-plate
solution into one along a curved plate (known as the transposition theorem). In 1949, Landau [21] used a

simple algebraic transformation to translate and normalize a coordinate for predicting ablation rates.

Numerous other studies appeared at this time and in subsequent years – and a large body of work now

exists that has advanced the use of analytically specified transformations (e.g., either algebraic or conformal

mappings).

A 1974 paper by Thompson et al. [46] is generally considered to be the seminal work on the numerical

generation of curvilinear coordinates. In [46], the coordinates were computed by solving a posited set of

elliptic equations. Brackbill and Saltzman [5] also generated coordinates by solving elliptic equations but
derived formally as Euler–Lagrange equations that result from the extremization of a ‘‘mesh-adaptivity’’

functional. The significance of this optimization was that the mesh-generator could be constructed by

taking into account properties of the grid (e.g., orthogonality and smoothness) and of the solutions (e.g.,

gradients of dependent variables) to minimize the truncation error. However, time-continuity is not readily

accounted for (in the mesh-adaptivity functional) 3 so grid generation via a variational optimization ap-

pears best-suited for steady flows. In contrast, our concerns are with inherently transient problems, so we

focus on time-continuous grid deformation.

By the early eighties, the use of continuous mappings, based upon either analytical or numerical
methods, was recognized as continuous dynamic grid adaptation (CDGA), and became widespread in

computational engineering. Meteorological applications, however, have favored the use of nested grids

[8,32,34] over traditional CDGA methods. 4 Nested grids offer simplicity in algorithmic construction, and

an ability to add or remove grid points as desired. In spite of these advantages, the abrupt changes in grid

resolution near boundaries makes the development of satisfactory boundary conditions difficult, where-

upon nested-grid methods are claimed unsuitable for long time integrations; cf. [14]. Early meteorological

uses of CDGA include the works of Gal-Chen and Sommerville [16] on the analytic terrain-following
1 Genesis and/or sudden changes in intensity of tropical storms appears to be ‘‘hyper’’ sensitive to lateral boundary conditions,

whereupon simulations on the entire globe obviate the problem.
2 In applications addressed in this paper, neither Sp or St are curved in the sense of geometrodynamics, with a nonzero Riemann

curvature tensor – our concern is with curvilinear coordinate descriptions of a flat (locally Lorentz) space; [26].
3 Time adaptivity may enter the elliptic problem indirectly through either (i) time-dependent boundary conditions, or (ii) replacement

of the elliptic system resulting from the variational approach with it�s time derivative [1].
4 A third type of dynamic grid adaptation is rapidly gaining favor – based upon the use of unstructured grids [4]; such techniques are

well advanced in engineering applications [47].
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coordinate transformation, and of Sharman et al. [31] on the numerical generation of terrain-fitted grids –

each was concerned only with stationary grids. Later studies incorporating time-adaptivity include

[11,13,19,29] – they addressed atmospheric applications through the range of scales from small, through

meso, to regional. Only recently, stationary adaptive grids have been applied to global climate simulation

[14,15]. In this paper we complement earlier works with the development of a formal mathematical-nu-

merical framework that allows the use of CDGA in a large class of applications. Our exposition and im-

plementation are tailored for anelastic nonhydrostatic models of atmospheres and oceans, through the

range of scales from micro [17] to global [43]; yet the model can be applied in a much broader class of
problems ranging from biomechanics [9] to solar physics [12]. We demonstrate – we believe for the first time

– the use of CDGA with time variation in a global model.

Our model is introduced in Section 2.1 using a symbolic, vector representation that enhances physical

interpretation. The more detailed description of the various terms that arise – needed for the computational

algorithm – is then given in tensor form in Section 2.2. Both types of description have merit. The various

terms that arise in the mathematical model (e.g., material derivative, gradient, and so on) have a tangible,

physical existence that is independent of any coordinate-based description and is best understood intuitively

using a symbolic, geometric representation. However, coordinate-based representations are necessary for
computing the explicit form of all requisite terms. Since the precise form of the terms depends upon the

coordinate system being used, a tensor representation is preferable. It allows the use of powerful theory to

deduce formulae that are valid in all coordinate systems, i.e., coordinate invariant forms, while conveying

the physical interpretation of the symbolic representation. An example of paramount importance to our

model involves the velocity – three different forms are used. Working only with a symbolic representation, it

is not obvious that the use of three distinct velocities is helpful for designing an efficient computational

algorithm. A coordinate-based representation reveals this. However, the details depend upon the coordi-

nate system. A tensor representation merges these velocity details into coordinate invariant forms.
We illustrate our theoretical developments with two distinct examples of mesoscale and planetary type

flows. Taken together, they document the efficacy of the deformable grid model in diverse applications and,

perhaps even more important, show several modes of utilization of the coordinate mapping. The latter

illustrates well the potential of our approach for computational research in meteorology.

Our first example simulates a finite-amplitude, 2D inertio-gravity-wave packet, forming in a rotating

mid-latitude environment characterized by a uniform wind and stratification. The deflection of the lower

boundary is prescribed as a traveling disturbance in the form of a broad, shallow trough. Such a deflection

may be thought as a rough 2D approximation of the tropopause (an internal free boundary between the
lower atmosphere and the stratosphere) in an axially symmetric, low pressure cyclone. The trough is

translated periodically in the zonal direction, driving rotating-stratified-fluid response through various flow

regimes. Here, the (vertical) coordinate mapping adapts to the lower boundary in the spirit of the terrain-

following transformation [16] extended to time-dependent lower boundaries [29]. Independently of the

vertical coordinate, the horizontal coordinate is transformed so that a high-resolution ‘‘nested grid’’ follows

the gravity-wave packet. The zonal coordinate transformation uses a top-hat profile for the mesh density,

which is advected numerically using our shape-preserving NFT advection scheme. Aside from documenting

substantial savings in computational expense (roughly a factor of two compared to the simulation using
uniformly high resolution everywhere) this example shows how continuous coordinate mapping can be

employed in lieu of grid nesting common in meteorological models [8,34].

Our second example is the Held–Suarez planetary benchmark flow that idealizes the Earth�s weather and
climate [18] using a stationary diabatic forcing. From a fluid dynamics viewpoint, the Held–Suarez problem

represents thermally forced baroclinic instability on the sphere. In a sense, it bears striking resemblance to

large-eddy-simulation studies of convective boundary layers [24], where simulated flows are both turbulent

and stochastic. Although small differences in model setups can lead to totally different instantaneous flow

realizations (viz. weather), the integral flow characteristics (viz. climate) are fairly stable and predictable.
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We use evolution of such integral flow features (e.g., mid-latitude zonal jets) as a focus for the mesh ad-

aptivity, and compare several different simulations with stationary (stretched/unstretched) and adaptive

grids. Our results are dramatic in revealing potential of the mesh adaptivity for planetary flows. First,

solutions based upon the stretched/adaptive grids show substantially more physical details (sharp yet

smooth time-space contrasts) in the regions of interest (e.g., tropics) than the solutions employing uniform

meshes of comparable computational complexity. Second – a feature unique to the cartography of the

sphere – focusing grid resolution in equatorial regions, with its concomitant reduction near the poles,

improves the conditioning of the numerical elliptic operator, thereby accelerating the convergence of the
elliptic Krylov-subspace solver. Together, these two aspects of mesh stretching/adaptivity effect in deliv-

ering accuracy comparable to a uniform-grid result with twice the resolution for less than half the com-

putational expense.

A few brief notes about notation are in order. We use� to mean on the order of,� to mean identically, and

:¼ to mean defined as. The velocity vector v appearing in Section 2.1 does not distinguish between the three

velocities mentioned above. In Section 2.2 these velocities are distinguished. Also, superscripts are of two

distinct types, (i) repeating indices i, j, k, p, and q, and (ii) indices that denote the physical or geometric nature

of a quantity, such as superscript s, *, and 0. Finally, observe that indices may have ranges 1–3 or 0–3.
2. Anelastic fluid model

Because of the enormous span of the spatial and temporal scales important in geophysical fluids, explicit

integrations of generic compressible equations are impractical (viz., prohibitively expensive) for most ap-

plications. As a result, meteorological models utilize a variety of analytic approximations to the fluid

equations (hydrostatic, elastic, anelastic, Boussinesq, and so on) and evince many split-explicit or semi-
implicit methods for their integrations. For research studies of all-scale geophysical fluids, we have found

the anelastic nonhydrostatic system optimal so far.

2.1. Overview

For simplicity, here we focus the discussion on an inviscid, adiabatic, density-stratified fluid whose

undisturbed, geostrophically balanced ‘‘ambient’’ (or ‘‘environmental’’) state is described by the potential

temperature he ¼ heðxÞ and the velocity ve ¼ veðxÞ. To begin discussion, we present first a compact, sym-

bolic form of the governing equations for the anelastic system of Lipps and Hemler [22]:

DivðqbvÞ ¼ 0; ð1Þ
Dv

Dt
¼ �Gradðp0Þ � g

h0

hb
þ F; ð2Þ
Dh0

Dt
¼ �v �Gradhe; ð3Þ

Here the operators D=Dt, Grad, and Div symbolize the material derivative, gradient, and divergence; v

denotes the velocity vector; F symbolizes inertial forces (e.g., Coriolis and metric forces due to the curvature

of the coordinates; see [41]); h, q, and p denote potential temperature, density, and a density-normalized

pressure; and g symbolizes the gravity vector. Primes denote deviations from the environmental state. The

subscript b refers to the basic state, i.e., a horizontally homogeneous hydrostatic reference state of the

Boussinesq expansion around a constant stability profile (see [8, Section 2b], for a discussion).
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The anelastic Eqs. (1) and (2) may be viewed as combining two distinct approximations in the com-

pressible Euler equations: a Boussinesq type linearization of the pressure gradient forces and mass fluxes in

momentum and mass continuity equations, respectively; and the anelasticity per se equivalent to taking the

limit of an infinite speed of sound. Both assumptions are well accepted in solar [12] and ocean [25] mod-

eling. Although the anelastic equations have been proven accurate for simulating the elements of atmo-

spheric weather and climate up to synoptic scales [27], their use raises concerns when extended to global

circulations. Obviously, solving fully compressible Euler equations would circumvent such concerns.

However, designing an accurate, flexible, and computationally efficient all-scale geophysical fluid model
based on the fully compressible equations is a difficult task, especially in the class of NFT approximations

advocated in [12,17,43,44] and pursued here. In contrast, adopting the anelastic approximation greatly

simplifies the task. In [43], the authors discussed extensions of a Cartesian small- to mesoscale nonhy-

drostatic anelastic model to a rotating mountainous sphere. Using benchmark ‘‘dynamical core’’ experi-

ments that idealize atmospheric weather and climate, they assessed the efficacy of numerous formulations of

the global model by measuring the differences due to analytic formulation of the governing equations

(hydrostatic, nonhydrostatic, compressible, anelastic, incompressible, etc.) against the truncation errors of

optional second-order-accurate discretization approximations (implicit, explicit, semi-Lagrangian, Eule-
rian, etc.). They showed that the differences due to the higher-order truncation errors of legitimate modes of

executing contemporary global models overwhelm the differences due to analytic formulation of the gov-

erning equations. Their study, and its extension to moist processes in [17], builds confidence that nonhy-

drostatic anelastic global models derived from small-scale codes (i.e., not relying on large-scale balances in

their analytic/numerical design) adequately capture a broad range of planetary flows.

2.2. Analytic formulation

Flexibility to solve the governing equations in a variety of domains – a unique feature of our anelastic

model – comes from a generalized coordinate transformation (homeomorphism) that maps the physical

domain Sp onto a transformed, computational domain St while preserving the topology (connectivity) of

Sp. In this paper, the original physical domain Sp is described using either (i) Cartesian coordinates, or (ii)
spherical coordinates with an OðeÞ circle about the poles removed (where � � meridional grid increment). 5

Thus, the same model can be used both for global and small-to-mesoscale applications. Embedded in the

transformation is a time-variable version [29] of the standard terrain-following coordinates, and more

significantly, a horizontal stretching whereby the horizontal coordinates in St are arbitrary (subject to C2

continuity) functions of the time and horizontal coordinates in Sp.

The three-dimensional, time variable mapping is specified as

ðt; x; y; zÞ � ðt;Eðt; x; yÞ;Dðt; x; yÞ;Cðt; x; y; zÞÞ; ð4Þ

where in particular, ðx; yÞ do not depend upon the vertical coordinate z. The latter keeps vertical columns

vertical, to preserve the primary hydrostatic structure of the atmosphere, and simplifies the metric terms.

In the transformed coordinates ðt; xÞ 2 St, Eqs. (1)–(3) can be written as follows:

oðq�vskÞ
oxk

¼ 0; ð5Þ
5 This replaces the traditional differentiation across the pole, used in [43], with Neuman boundaries on the OðeÞ circle, thereby greatly
improving communications in the massively parallel variant of the model code when grid deformation is extended to the vicinity of the

poles.
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dvj

dt
¼ �eGGk

j

op0

oxk
þ g

h0

hb
dj3 þ F j; ð6Þ
dh0

dt
¼ �vsk

ohe
oxk

; ð7Þ

where q� :¼ qbG, with G denoting the Jacobian of the transformation (defined below), and j; k ¼ 1; 2; 3
correspond to the x; y; z components, respectively. In the momentum Eq. (6), eGGk

j :¼
ffiffiffiffiffiffi
gjj

p
ðoxk=oxjÞ are

renormalized elements of the Jacobi matrix where summation is not implied over j, and dj3 is the Kronecker
delta. The coefficients gjj are the diagonal elements of the conjugate metric tensor of Sp (defined below).

Eqs. (5)–(7) need to be studied carefully – while they are reminiscent of the standard forms (1)–(3) as well

as previously published tensor formulations [48], there are a few subtleties involved. The total derivative is

given by d=dt ¼ o=ot þ v�kðo=oxkÞ, where v�k :¼ dxk=dt :¼ _xxk is the contravariant velocity. Appearing in the

continuity (5) and potential temperature (7) equations is the solenoidal velocity,

vsk :¼ v�k � oxk

ot
ð8Þ

so named because of the form continuity (5) takes with it. This form is a general result for the transfor-

mation (4) given: (i) qb ¼ qbðxÞ; and (ii) the physical coordinate system x 2 Sp does not depend upon time

(Cartesian, cylindrical, spherical, oblate spheroidal, and so on, would all be acceptable choices for the

physical system). Eq. (5) readily follows from the tensor invariant form of anelastic continuity

G
�1
oðqbGv�

iÞ=oxi � 0 where i ¼ 0; 1; 2; 3 (i ¼ 0 refers to time t, thus u�0 � 1) [30]. Use of the solenoidal

velocity has advantages for the solution procedures because it preserves the incompressible character of

numerical equations. 6 In the momentum equation, it is the specified physical velocity vj, defined in Sp, that
is advected with the total derivative. In meteorological applications, the physical velocity is typically defined

using a local Cartesian system and so has dimensions of length/time. A distinct representation of the

physical velocity, vj 6¼ vj, also exists for the transformed coordinate system. If vj is ‘‘typically defined’’, it is

given by vj ¼
ffiffiffiffiffiffi
gjj

p
v�j, where summation is not implied. Then the physical vj and contravariant v�j velocity

differ by a scale factor only. The contravariant velocity is transformed according to v�j ¼ ðoxj=oxiÞv�i . While

these relationships suffice for expressing any velocity (solenoidal, contravariant, or physical) in terms of the

others, a particularly useful relation for expressing the solenoidal velocity in terms of the physical is

vsj ¼ eGGj
kv

k: ð9Þ

The elements of the metric tensor of the transformed coordinates are gmn ¼ gpqðoxp=oxmÞðoxq=oxnÞ, where
gpq denotes the metric tensor of the physical coordinate system (which need not be Cartesian). The Jacobian

is then G ¼j gmn j1=2. The components of gpq may be computed by identifying Sp as Riemannian with

symmetric distance (or fundamental) metric ds2 ¼ gpqdxpdxq [45]. This fundamental metric is readily

computed using the Pythagorean Theorem on an infinitesimal element in any orthogonal coordinate system

(e.g., gpq ¼ dpq for Cartesian coordinates; while more generally gpq ¼ 0 for p 6¼ q in orthogonal Sp). Con-

sequently, the components of the conjugate metric tensor, needed in (6), are computed from gjj ¼ 1=gjj.
7

Note that unlike gpq, the metric coefficients eGGq
p appearing in Eqs. (6) and (9) are not symmetric (i.e.,eGGq

p 6¼ eGGp
q).
6 For moving coordinate systems, the anelastic continuity equation using contravariant velocities is not divergence free and takes, in

effect, a compressible/elastic form [29].
7 In nonorthogonal systems, gpq may be evaluated from the relation gpkgkq � dqp [45].
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Curvilinear coordinate descriptions generate apparent centrifugal and Coriolis accelerations simply due

to the curvature of the coordinate system. These Christoffel terms [45] are placed into the forcing term, F j,

of Eq. (6). Geophysical Coriolis and centrifugal accelerations, as well as any additional forcings in the

momentum equation due to frictional/stress terms such as damping (e.g., gravity-wave absorbers in vicinity

of open boundaries) and/or subgrid-scale (SGS) modeling are also included in the F j term. The magnitude

of gravity is denoted by g ¼ jgj. Extensions to thermal forcing – such as radiation, damping and/or SGS

modeling terms, can be incorporated into the model by adding appropriate terms to the right-hand side of

(7).
2.3. Numerical approximations

Each prognostic equation of the anelastic system (6) and (7) can be written in a compact conservation-
law form

oq�w
ot

þr � ðq�v�wÞ ¼ q�R; ð10Þ

where r� :¼ ðo=ox; o=oy; o=ozÞ� and w is an intensive dependent fluid variable, such as a component of

specific momentum (viz. velocity component), or potential temperature. In (10), R combines all forcings

and/or sources that appear on the right-hand side of (6) or (7). Given (5), (10) is mathematically equivalent
to the Lagrangian evolution equation

dw
dt

¼ R: ð11Þ

Our basic NFT approach for approximating either (10) or (11) on a discrete mesh is second-order-accurate

in space and time. The two optional model algorithms, Eulerian [36] and semi-Lagrangian [35], correspond

to (10) and (11). Either algorithm can be written in the compact form

wnþ1
i ¼ LEiðewwÞ þ 0:5DtRnþ1

i : ð12Þ

Here, we denote wnþ1
i as the solution at the grid point ðtnþ1

; xiÞ; eww :¼ wn þ 0:5DtRn; and LE denotes either an

advective semi-Lagrangian or a flux-form Eulerian NFT transport operator. In the Eulerian scheme, LE

integrates the homogeneous transport Eq. (10), i.e., LE advects eww using a fully second-order-accurate

multidimensional NFT advection scheme [40,44]. In the semi-Lagrangian algorithm, LE remaps trans-

ported fields, which arrive at the grid points ðt; xiÞ, back to the departure points of the flow trajectories

ðtn; x0ðtnþ1
; xiÞÞ also using NFT advection schemes [34,35].

Eq. (12) represents a system of equations that is implicit with respect to all dependent variables in (6) and

(7), since all forcing terms are assumed to be unknown at nþ 1. Note that the forcing term on the rhs of (7)
contains the complete convective derivative. This is significant because it guarantees that the implicitness of

the numerical approximation does not adversely affect either the impermeability of the lower boundary or

the conservation of h0, regardless of details of the transformation (4) (see [10,43], for discussions). The

implicitness of the pressure gradient forces is an essential feature of the anelastic model, as it enables the

projection of the preliminary values LEðewwÞ onto solutions of the continuity Eq. (5). To make this pro-

jection, the system of simultaneous equations resulting from (12) are algebraically inverted to construct

expressions for the solenoidal velocity components. These components are substituted into (5) to produce

an elliptic equation for pressure (see Appendix A for the complete development). The elliptic pressure
equation is solved (subject to appropriate boundary conditions) using the generalized conjugate-residual

approach – a preconditioned nonsymmetric Krylov-subspace solver [33,37,38]. Given the updated pressure,

and hence the updated solenoidal velocity, the updated physical and contravariant velocity components are
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constructed from the solenoidal velocities using Eqs. (9) and (8), respectively. Nonlinear terms in Rnþ1 (e.g.,

metric terms arising on the globe) may require outer iteration of the system of equations generated by (12) –

see [43, Appendix] for discussion. When included, subgrid-scale modeling is typically first-order-accurate

and explicit, i.e., it assumes SGSðwnþ1Þ ¼ SGSðwnÞ þ OðDtÞ in Rnþ1, see in [40, Section 3.5.4]. For extensions

to moist processes, see [17].
3. Example simulations using time-adaptive grids

The CDGA (continuous dynamic grid adaptation) capability is enabled by moving the physical grid in

St. The following subsections document this capability with two complementary examples. The first ex-

ample demonstrates that the mathematical formalism and NFT algorithms that underlie the model allow

flexibility in effecting coordinate transformations. In this case, we numerically advect an interior nested grid

of enhanced uniform resolution in order to follow the development of a two-dimensional inertio-gravity-

wave packet. The nested grid is embedded in an exterior grid of reduced uniform resolution. Consistent

with our NFT model algorithm, no apparent numerical artifacts (e.g., dispersive oscillations) are observed
regardless of the step changes in grid resolution. The second example demonstrates the time adapted grid

capability in a far larger application – a fully three-dimensional, nonhydrostatic, global atmospheric model.

Here the adaptation is analytically specified to trace the development of mid-latitude, zonal jets. The flow is

turbulent and stochastic – so we present a few selected statistics on the ‘‘climate’’ to gauge the effectiveness

of the adaptive grid.

3.1. Traveling boundary disturbance

This experiment simulated the evolution of an inertio-gravity-wave packet generated by a 2D depression

traveling along the tropopause using a mesoscale sized, Cartesian physical domain. We used a cosine de-

flection of the lower domain boundary (streamline) zsðt; xÞ ¼ �0:5h0½1þ cosðpx0=LÞ� if jx0j=L6 1 and

zsðt; xÞ ¼ 0 otherwise, with x0 :¼ x� ðx0 þL sinð2pt=T ÞÞ. The depth and half-width of the deflection were
assumed h0 ¼ 500 m, and L ¼ 200 km, respectively. The amplitude of the deflection�s horizontal dis-

placement and the period of oscillation were set toL ¼ 3000 km and T ¼ 96 h, respectively. The basic state

(the environmental state was set identically) was one of uniform zonal wind (vb ¼ 10 m s�1), stability (with

Brunt–V€aais€aal€aa frequency N ¼ 0:02 s�1), infinite density scale height (i.e., Boussinesq approximation), and

Coriolis parameter set for +45� latitude.
The transformed vertical coordinate was prescribed as the time variable generalization [29] of terrain

following coordinates [16] – z � Cðt; x; y; zÞ ¼ Hðz� zsÞ=ðH � zsÞ, where H is the depth of the model do-

main. The reference computational grid consisted of 1001� 201 points, and covered the model domain of
½�2500; 2500� � ½0; 40� km2 with a uniform resolution of Dx ¼ 5:0 km and Dz ¼ 0:2 km in the zonal and

vertical, respectively. The simulation spawned half of the period of the lower boundary oscillation with

NT ¼ 5760 uniform intervals Dt ¼ 30 s. The open boundaries of the model used weak sponges to minimize

spurious wave reflections. At t ¼ 0, the initial condition consisted of the lower boundary deflection centered

at x0 ¼ �1500 km, flat isentropes, and the potential flow satisfying the incompressibility constraint (5) and

boundary conditions. The evolution of the reference solution is illustrated in Fig. 1 that displays isolines of

the vertical velocity field every 8 h. Note that the magnitude of the flow and the dominant vertical

wavelength vary in time.
The result in Fig. 1 serves as the reference for an extreme utilization of the adaptive-grid formalism

presented in Section 2.2. Here, we employ the continuous transformation (4) in the limit where the tran-

sition between two homogeneous grids with distinct horizontal resolutions occurs in a distance smaller than

the horizontal grid increment itself. The coordinate transformation is computed numerically – in the spirit



Fig. 1. Traveling inertio-gravity-wave packet; reference solution generated using a uniform, high-resolution grid.
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of using advection schemes derived via continuous arguments of Taylor-series expansion for transporting

fronts and flow discontinuities. From a model-engineering viewpoint, this example documents how con-

tinuous coordinate mappings can be implemented to mimic nested grids. All setups of the CDGA simu-

lation are the same as in the reference runs, except that the horizontal grid is twice coarser outside the

region of the traveling wave packet ðx0 þL sinð2pt=T ÞÞ � 500 km (thus the grid consisted of 601� 201

points).

The movement of the nested grid can be specified quite arbitrarily with disregard to details of the

simulated flow – for its utility requires that it encompasses the evolution of physical features of interest only
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‘‘reasonably close’’. Forthcoming from such a principle, we define the initial physical grid (here Cartesian)

with an embedded dense nest essentially ‘‘by hand’’, and then postulate its evolution via a ‘‘mesh-conti-

nuity’’ conservative advection equation posed entirely in the transformed domain

odx
ot

þ oUdx
ox

¼ 0: ð13Þ

Here dx ¼ dxðt; xÞ denotes the physical-grid-increment function of the transformed coordinates, 8 and U is
the velocity of the mesh-movement. With (13), the entire problem of prescribing the mesh movement has

been placed in the definition of U . In general, Eq. (13) will have a dy counterpart, and each of the two mesh-

continuity equations will include divergence of the advective fluxes (V dx and V dy , respectively) in y
direction. To maintain uniformity of both dense and coarse meshes, U and V need to satisfy certain

conditions – zero divergence and limited deformation, at least. In the present example, we select U equal to

the velocity of the traveling depression in transformed coordinates, i.e., U ¼ UðtÞ ¼ b2pL=T cosð2pt=T Þ,
with b ¼ 5=6 (see Appendix B for details).

Eq. (13) is solved numerically at each time step of the model – prior to updating Rnþ1
i forcings in (12) –

using a monotone, flux-form NFT advection scheme. The conservative formulation is important to assure

preservation of the total length of the domain. Having updated dxjnþ1
, new values of the xðt; xÞ coordinates

are found by averaging (to prevent a round-off error build-up) the two recurrences: xiþ1 ¼ xi þ dxjiþ1=2 and

xi�1 ¼ xi � dxji�1=2, with x1 and xNX held constant at the left and right boundaries of the model domain. Note

that dx does not need to be stored, but it can be defined from dxjniþ1=2 :¼ xniþ1 � xni before the call to the

advection routine integrating (13).

Fig. 2 shows the adaptive solution at four selected times to compare with the reference solution in Fig. 1.

The present results are plotted in the transformed domain so that no smoothing due to interpolation is
introduced. As a result, the proportions of the two figures differ, but they show excellent comparability,

down to fine details. For the sake of completeness, the geometry of the mesh is illustrated in Fig. 3. Solid

lines show computational results for normalized mesh density dxDx�1 whereas dashed lines show physical

coordinate x normalized by the size of the domain. 9 The abscissa is the transformed coordinate x nor-

malized by the domain size. An exact solution (see Appendix B) shows that dxDx�1 ¼ 6=5, 3/5 for the

coarser and finer grids, respectively, and that the horizontal extent of the finer grid in normalized, trans-

formed coordinates is 1/3. The numerical solution depicted in Fig. 3 agrees with these values precisely.

The mesh-continuity equation has been integrated using the third-order-accurate, fully monotone option
of the multidimensional positive definite advection transport algorithm (MPDATA) [23]. In spite of the

considerable expense of this scheme and the overhead associated with the CDGA machinery, the adaptive

solution requires only 60% of the computational expense of the reference solution for essentially the same

accuracy.

3.2. Idealized climate simulations

This second example simulates the idealized climates of Held and Suarez [18], and demonstrates the

potential of mesh adaptivity for modeling geophysical turbulence. The Held–Suarez test problem typifies

the response of an initially stagnant and uniformly stratified fluid to a diabatic forcing that mimics the long-

term thermal and frictional forcing in the Earth�s atmosphere. This diabatic forcing attenuates h and v to

the specified equilibrium temperature hEQðjyj; zÞ and vjz<zi
¼ 0, where zi represents a height of the boundary

layer (see [18, Section 2], for details); y and z refer to the meridional and the vertical (radial) directions,
8 Since the transformed grid is always homogeneous, dx is proportional to a finite difference representation of a grid stretching factor

ox=ox .
9 The domain size is selected the same for both the transformed and physical domains.



Fig. 2. Traveling inertio-gravity-wave packet; CDGA solution with 1000 km region of high grid resolution only in immediate

neighborhood of the traveling disturbance.
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respectively. The corresponding forcing functions augment the governing equations of motion (6), (7) with
appropriate Rayleigh friction and Newtonian cooling/heating terms.

Results from four numerical experiments, that differ only in the design of the horizontal grid, are

summarized in Table 1, and Figs. 4 and 5. U0 and U2 refer to stationary, uniform-increment grids in the

zonal and meridional directions. These two simulations provide our ‘‘coarse’’ and ‘‘fine’’ meridional-res-

olution control results. Grid SS is also stationary but with doubled uniform zonal resolution. In the me-

ridional direction, a coordinate transformation is applied such that a broad equatorial region has double

the resolution of the uniform grid U0. Consequently, we regard the SS simulation to be the most accurate in

the equatorial region. Grid TS is time adaptive, initially with uniform zonal and meridional increments. At
50 days the meridional coordinates begin to adapt to the developing zonal structure, such that at 150 days

the region near �37� latitude has double the resolution of a uniform grid, while a narrow equatorial band

maintains negligible change in grid resolution. This puts the maximum meridional resolution approxi-

mately in the region of the mid-latitude zonal jets. Outside of the time interval 50–150 days, the TS grid is

stationary. The time-dependent coordinate transformation underlying the grid adaptation (as well as the

static stretch for case SS) was set up a priori in the form of elementary polynomial functions, discussed in

[29]. 10 Each of the four simulations was run for 3 years, beginning with a randomly perturbed no-flow

initial state, see [43] for further details of the U0 simulation. Finally we note that no explicit subgrid-scale
(SGS) turbulence model was used in this simulation – in spite of the strong turbulence evinced by the flow.

Instead, we relied upon the nonoscillatory machinery of the NFT algorithms to provide the dissipation
10 Recall, from the preceding example, that our NFT model is equally adept at handling the time-dependent coordinate

transformation numerically in response to developing flow features.



Fig. 3. Normalized grid stretching factor dxDx�1 (solid line), and normalized physical coordinate xðt; xÞ=ð2xextÞ (dashed line) as a

function of normalized transformed coordinate for CDGA analogue of a ‘‘nested grid’’. Here 2xext ¼ 5000 km denotes the extent of the

computational domain. See www.mmm.ucar.edu/asr2002/deepconv2.html for an animation of the results shown above and in the

previous figure.
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required to keep the computations stable. Termed VLES (for very-large-eddy simulation), our experience

[44] is that this approach yields a physical accuracy at least as good as more traditional LES (large-eddy

simulation) methods.

Fig. 4 illustrates the overall complexity of the flow. It shows instantaneous horizontal and vertical cross-

sections, respectively, at the surface and equatorial plane, of the potential temperature (isentropes) h, and
zonal wind field u, after 3 years of simulated flow from case U0. Plates a and b depict the signature of

baroclinic eddies at the surface (viz. weather systems), whereas plates a0 and b0 show the associated vertical

structure with distinct stratification in the troposphere and stratosphere. The four plates of Fig. 5 depict the
zonally averaged, 2.3-year means of the zonal wind field – a climatic feature – and contrast the complexity



Table 1

Summary of the four climate simulations

Simulation Gridpoints Type Symmetry (%) V ðhÞmax CPU time/dt

U0 64� 32 Uniform )8.3 42.3K2 1

U2 64� 64 Uniform 1.5 49.6K2 1.6

SS 130� 32 Stretched 2.0 48.5K2 1.6

TS 64� 32 Adaptive )1.3 46.7K2 1 Before, 0.8 after

The number of gridpoints refers to zonal�meridional points; all simulations used 41 vertical nodes with a vertical stepsize of 800

m, and a uniform time step of 900 s. Symmetry refers to the error in symmetry of the meridional wind field based upon the ratio of

maximum to minimum zonally averaged, 2.3-year mean values. V ðhÞmax is the maximum value of the variation of the potential

temperature h, about its zonal-time average. The CPU time per time step is relative – the ‘‘before’’ and ‘‘after’’ values cited for the TS

simulation refer to before and after the time adaptation. During the time adaptation the change was monotone.
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of the instantaneous flow in Fig. 4. While a detailed comparison is outside the scope of this paper (see [44]

for a more extended discussion), it is clear that each of the alternative simulations U0, SS, and TS offer

some but not all of the features of the U2 simulation. Simulation SS provides the best match to U2 for the

zonal flow in mid-troposphere (z � 7 km) in the equatorial band bounded by ��30�, while TS matches
better at somewhat higher latitudes but more poorly in the most central ��15� band. At high latitudes the

U0 grid does better as the SS and TS grids have lower resolution near the poles. A similar pattern unfolds

when comparing the instantaneous flows (not shown). Only the SS simulation shows the closed, westward

jet high over the equator. The lower altitude, mid-latitude eastward jets appear too confined in latitude,

however. Simulation TS shows these jets to be broader, though not to the same extent as shown in the U2

result.

Simple estimates of the accuracy of the simulations may be found by considering the symmetries of the

flow. Assuming that the climate is stationary, then the zonally averaged 2.3-year means of the meridional
wind should be anti-symmetric about the equator. Thus the magnitudes of the maximum and minimum

values of meridional wind should be equal. The ‘‘symmetry’’ parameter in column 4 of Table 1 gives the

departure of this ratio from unity. Simulations U2, SS, and TS all yield similar values with a departure from

symmetry of �2%. The U0 symmetry error is four times larger. Another simple statistic, V ðhÞmax is given in

column 5 of Table 1, it is the maximum value of the variation of potential temperature h about its zonal-

time average. For this statistic, the stretched and time adaptive simulations outperform the coarse, uniform

grid simulation. This result generally holds for other global statistics based upon the variation of the flow,

whereas statistics based solely on the zonal-time average do not show consistent improvement using SS and
TS (with the exception of the vertical wind field).

A noteworthy result given in Table 1 is that use of CDGA does not necessarily increase CPU time.

Consider the computational costs of the simulations as indicated in the last column of Table 1. This data

shows that the stationary and time adapted grids (SS and TS, respectively) require 20% less CPU time per

time step than the uniformly spaced grid (with the same number of grid points, U0). This result has been

confirmed using an earlier, uniform grid version of the code. The decrease is due to accelerated convergence

in the pressure solver – which we attribute to a decrease in the condition number of the elliptic operator.

The reason for the improvement in condition number is that with larger meridional increments near the
poles, the physical zonal increment Dx near the poles increases. The net effect is that by doubling the

number of zonal nodes and by using stretching to enhance the meridional resolution in the equatorial

region by a factor of two, we can simulate a fully doubled equatorial band resolution using only half as

many nodes as needed for a uniform, higher resolution grid. Simultaneously, the computational time will be

increased by only a factor of 1.6 compared to simulation U0. Typically, in a Cartesian domain, such an

increase in resolution using a uniform grid (with four times as many nodes as in U0) would cost an order of

magnitude more CPU time.



Fig. 4. Instantaneous solutions of the idealized climate problem after 3 years of simulation. Plates a0 and a show potential temperature

field in the vertical equatorial plane and at the surface, respectively. Plates b0 and b display the zonal velocity contours with imposed

flow vectors, respectively, in the equatorial plane and at the surface. Contour extrema and intervals are shown in the upper left corner

of each plate (in plate a0 we used two contour increments to capture h variability in the troposphere). Negative values are dashed.

Maximum vector lengths are shown in the upper right corner of plates b0 and b. k and / denote the zonal (x=R0) and meridional (y=R0)

angular coordinates, respectively, where R0 is the radius of the Earth.
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4. Remarks

The two example applications presented in this study demonstrate that a computational model that is

designed from the bottom up combining NFT algorithms and generalized coordinates is ideally suited for

the purpose of CDGA in a variety of geometrical systems. The use of generalized coordinates permits the

model to work with spherical or rectangular computational domains with equal facility. Furthermore, it

even could be used to model rapidly rotating, strongly oblate spheroidal bodies by using the terrain



Fig. 5. Results from global simulation using coordinate transformations. Shown are zonally averaged, 2.3-year means of zonal winds.

For convenience, min and max denote the extrema of the zonal wind fields; the same contours with an interval of 4.0 m s�1 are used in

all plates. Contour magnitudes are given by the grayscale key. (a) Uniform horizontal grid U2; (b) uniform grid U0; (c) stationary

stretched grid SS; (d) bi-modal time adaptive grid TS. Here / denotes y=R0.
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following transformation to prescribe the shape of the spheroid. 11 The robust performance of NFT

methods allow the generation of adaptive grids that are free of pathological oscillations (cf. [11] for a

discussion). In particular, it enables the ability to mimic ‘‘nested’’ grids (NFT methods were designed with

propagating discontinuities in mind). Finally, the ability of NFT methods to supply an effective implicit
subgrid-scale model [44] facilitates LES studies in generalized coordinates by obviating the task of incor-

porating viscous stress.

Our model can handle with ease transformations presented either analytically or computed numerically.

The computational overhead associated with analytical transformations are negligible and it is fairly

straightforward to develop them when the regions of interest are few. For instance, applications such as a

global study of equatorially trapped waves (e.g., Madden–Julian Oscillation [49]) may profit from the use of

the class of analytic transformations, illustrated in Fig. 6:

Y ðt; Y Þ ¼ S�1
y Y þ 1ð � S�1

y

�
Y

n
; ð14Þ
X ðt;X ; Y Þ ¼ F0ðY Þ 	 X0ðt;X Þ þ F1ðY Þ 	 X þ T ðtÞ; ð15Þ
11 In geophysical/astrophysical applications adjustments are required in the environmental profiles to accommodate the resulting

changes in the Coriolis and centrifugal force fields.



Fig. 6. Proposed time adaptive grid for study of equatorially trapped waves. This transformation is a generalization of SS from Section

3.2. Both magnitudes and locations of maximum stretching may change in response to variations of dependent fields. The ‘‘snapshot’’

shown here corresponds to a time when Sx � 3 and Sy � 3 in (14)–(17), with n ¼ 5.
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where, X and Y are normalized zonal and meridional coordinates such that X 2 ½0; 1� and Y 2 ½�1; 1�. The
auxiliary functions are:

F0ðY Þ ¼ ð1� Y
2Þ; F1ðY Þ ¼ 1� F0ðY Þ; ð16Þ
X0ðt;X Þ ¼ S�1
x

�
þ 1
�

� S�1
x

�
	 f ðX Þ

�
	 X ; ð17Þ

where f ðsÞ ¼ ð10� 15sþ 6s2Þ 	 s2 and S�1
x , S�1

y are of the form S�1ðsÞ ¼ S�1
i þ ðS�1

f � S�1
i Þ 	 s 	 f ðsÞ, for

s 2 ½0; 1� where s ¼ ðt � tiÞ=ðt � tf Þ, and S�1
i , S�1

f refer to the initial and final values of maximum stretch

occurring at times ti, tf , respectively. For values of s 62 ½0; 1�, S�1 takes on constant value. For s 2 ½0; 1�, S�1

is C2 continuous. The function T ðtÞ in (15) allows zonal translation. SS results from (14)–(17) by choosing
Sx � 1; Sy � 2, n ¼ 5, and T � 0.

Comparison of the four climate simulations in Section 3.2 suggests that substantially more sophisticated

coordinate transformations (than above) may be required. For instance, it may be desirable for the time

adapted stretching to trace the baroclinic eddies (evidenced in Fig. 4(a)). The general design of such analytic

transformations that adapt to multiple physical features can be problematical. In the computational do-

main St (i.e., in the model code), it is the position of the physical coordinates as a function of grid indices

(i.e., transformed coordinates) that defines all necessary metric coefficients and transformations. But the

only a priori knowledge is that of the physical positions of the computational cells – viz. the knowledge of
the transformed coordinates as a function of the physical coordinates. Thus, the problem (of designing

suitable analytic transformations) is inherently implicit. In contrast, numerical evaluation of transforma-

tions that focus on tracing flow features can be technically easier – see the inertio-gravity-wave example in

Section 3.1. Since the entire problem is posed in the transformed domain, there is no difficulty regards the

implicitness of specified geometrical information. The transformation evolves in response to whatever flow

features have been targeted.
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Our focus to date has been to develop the model and test it using a few idealized cases/coordinate

transformations. We have only begun to scratch the surface in terms of the type of transformations to use,

especially in regards to numerical generation. We believe that the NFT advection of the grid increment –

utilized in the wave propagation example – provides an important clue towards the direction such methods

could go. Compared to more standard numerical transformations based upon the solutions of elliptic

equations – e.g. [5,46] – this advection-based approach offers the advantages of: (i) computational effi-

ciency, (ii) smoothness in time in addition to that in space, and (iii) a simplicity of imposing limits on

minimum grid spacing. This last feature may be realized by advecting d� ¼ dx � dmin, rather than dx, where
dmin is the minimum grid spacing allowed (corresponding to the maximum enhancement in resolution in Sp).

The positive definiteness of the NFT algorithm then assures that d� P 0 for an arbitrary velocity of the

mesh movement in (13). This is an important feature as it: (i) prevents the grid from collapsing into a

singularity, (ii) minimizes Courant number limitations [19], and (iii) provides control on resolution en-

hancement that is independent of the number of grid points.
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Appendix A. Elliptic pressure equation

The formulation of the elliptic pressure equation follows a standard projection procedure (cf.

[6,7,20,39]). Here, the discrete counterparts (12) of Eqs. (6) and (7) are first manipulated algebraically to

provide closed form formulae for the physical velocities vj. This is straightforward due to the nonstaggered

grid employed. The resulting formulae are then inserted into the discrete version of (5) utilizing (9). This

leads to the elliptic pressure equation

�Dt
q�

o

oxj
q�E fVVj

�h
� eCCjk op

0

oxk

�	
¼ 0; ðA:1Þ

where the entire equation has been premultiplied by �Dt=q�. The factor ()1) assures the formal negative-

definiteness of the elliptic operator on the lhs of (A.1); further normalization by Dt=ðq�Þ gives the resid-

ual errors of (A.1) the sense of the divergence of a dimensionless velocity on the grid. 12 The latter compares

directly to the magnitudes of the Courant and Lipschitz numbers and facilitates the design of a physi-
cally meaningful stopping criteria [38]. The functions fVVj and eCCjk are

fVVj ¼ eGGj
pV

p; ðA:2Þ
eCCjk ¼ eGGj
pC

pk ; ðA:3Þ

where p ¼ 1; 2; 3; Vp and Cpk are defined below.
12 Note that EðfVVj � 	 	 	Þ in (A.1) is the updated solenoidal velocity vsjjnþ1
, so the impermeability condition v�3jnþ1 ¼ 0 at the model

surface and lid, translates via (8) into the implicit Neumann boundary conditions for pressure fVV3 ¼ eCC3kðop0=oxkÞ � E�1ðox3=otÞ; see
[37,42] for discussion.
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If Sp is chosen to be a spherical coordinate system centered on a rotating planet, the nonsymmetric

coefficients eGGj
p take on the values: eGG1

1 ¼ E; x=ðC cos/Þ, eGG2
1 ¼ D; x=ðC cos/Þ, eGG3

1 ¼ C; x=ðC cos/Þ, eGG1
2 ¼ E; y=C,eGG2

2 ¼ D; y=C, eGG3
2 ¼ C; y=C, eGG1

3 � 0, eGG2
3 � 0, and eGG3

3 ¼ C; z. Subscripts preceded by a comma denote partial

differentiation. C ¼ r=R0, where R0 is the planetary radius, and (r;/) denote radius and latitude, respec-

tively. In the limit R0 ! 1, C ! 1 . The geometry of Sp then becomes a Cartesian ‘‘Beta-’’ or ‘‘F-plane’’.

With this choice of Sp (i.e, dual spherical/Cartesian system), the coefficient E becomes

E ¼


� GF2#x þ GF2F3#y þ G 1

�
þF2

3

�
#z þ ð1þ eaa�Þ 1

�
þF2

2 þF2
3

�	�1

; ðA:4Þ

where G ¼ 0:5Dtðg=hbÞð1þ a�Þ�1
and #j ¼ 0:5DteGGk

jhe;xk . Here eaa� ¼ 0:5Dteaa and a� ¼ 0:5Dta. The parameters
a and eaa are the inverse damping times for absorbers in the vicinity of boundaries for the momentum (6) and

potential temperature Eq. (7), respectively. The parameters Fj ¼ 0:5Dtfjð1þ a�Þ�1
, where fj are the

components of the geophysical Coriolis force (placed in the F j term of Eq. (6)). In the dual spherical/

Cartesian system, f1 � 0, f2 ¼ 2X cos/, f3 ¼ 2X sin/, and X is the planetary rotation rate. 13 Such a dual

Sp is now assumed for the remaining appendix variables.

The auxiliary fields Vj used in Eq. (A.2) can be compactly written as

V1 ¼ AU þBV �RF2W ; ðA:5Þ
V2 ¼ CU þDV þRF2F3W ; ðA:6Þ
V3 ¼ HU þIV þR 1

�
þF2

3

�
W ; ðA:7Þ

where the coefficients A to I are equal to

A ¼ Rþ ð1þ a�Þ�1
G#z; ðA:8Þ
B ¼ RF3 þ ð1þ a�Þ�1
GðF2#y þF3#zÞ; ðA:9Þ
C ¼ �RF3 � ð1þ a�Þ�1
GF3#z; ðA:10Þ
D ¼ R 1
�

þF2
2

�
þ ð1þ a�Þ�1

Gð�F2#x þ #zÞ; ðA:11Þ
H ¼ RF2 þ ð1þ a�Þ�1
Gð�#x þF3#yÞ; ðA:12Þ
I ¼ RF2F3 � ð1þ a�Þ�1
GðF3#x þ #yÞ; ðA:13Þ

and the velocities U , V , and W are defined as

U � LEðeuuÞ þ 0:5Dtðaue � f3ve þ f2weÞ; ðA:14Þ
V � LEðevvÞ þ 0:5Dtðave þ f3ueÞ; ðA:15Þ
13 Strictly speaking, these values of fj require that Sp be aligned with the rotation axis; for a spherical system, this axis must pass

through the coordinate poles.
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W � LEðewwÞ þ ~GG~hh0 þ 0:5Dtðawe � f2ueÞ; ðA:16Þ

where ~hh0 :¼ ~hh� he (see Eq. (12) for the definition of ~hh), ~GG :¼ 0:5Dtgh�1
b ð1þ eaa�Þ�1

, and

R :¼ ð1þ eaa�Þð1þ a�Þ�1
.

The coefficients Cjk used in Eq. (A.3) take the explicit form:

C11 ¼ R eGG1
1

�
þ eGG1

2F3

�
þ ð1þ a�Þ�1

G eGG1
2F2#y



þ eGG1

1

�
þ eGG1

2F3

�
#z

	
; ðA:17Þ
C12 ¼ R eGG2
1

�
þ eGG2

2F3

�
þ ð1þ a�Þ�1

G
heGG2

2F2#y :þ eGG2
1

�
þ eGG2

2F3

�
#z

i
; ðA:18Þ
C13 ¼ R eGG3
1

�
þ eGG3

2F3 � eGG3
3F2

�
þ ð1þ a�Þ�1

G eGG3
2F2#y



þ eGG3

1

�
þ eGG3

2F3

�
#z

	
; ðA:19Þ
C21 ¼ R



� eGG1

1F3 þ eGG1
2 1

�
þF2

2

�	
þ ð1þ a�Þ�1

G
h
� eGG1

2F2#x þ
�
� eGG1

1F3 þ eGG1
2

�
#z

i
; ðA:20Þ
C22 ¼ R
h
� eGG2

1F3 þ eGG2
2

�
1þF2

2

�i
þ ð1þ a�Þ�1

G
h
� eGG2

2F2#x þ
�
� eGG2

1F3 þ eGG2
2

�
#z

i
; ðA:21Þ
C23 ¼ R
h
� eGG3

1F3 þ eGG3
2 1ð þF2

2

�
þ eGG3

3F2F3

i
þ ð1þ a�Þ�1

G
h
� eGG3

2F2#x þ
�
� eGG3

1F3:þ eGG3
2

�
#z

i
;

ðA:22Þ
C31 ¼ RF2
eGG1

1

�
þ eGG1

2F3

�
þ ð1þ a�Þ�1

G
h
� eGG1

1

�
� eGG1

2F3

�
#x þ eGG1

1F3

�
� eGG1

2

�
#y

i
; ðA:23Þ
C32 ¼ RF2
eGG2

1

�
þ eGG2

2F3

�
þ ð1þ a�Þ�1

G
h
� eGG2

1

�
þ eGG2

2F3

�
#x þ eGG2

1F3

�
� eGG2

2

�
#y

i
; ðA:24Þ
C33 ¼ R
heGG3

1F2:þ eGG3
2F2F3 þ eGG3

3 1ð þF2
3

�i
þ ð1þ a�Þ�1

G
h
� eGG3

1

�
þ eGG3

2F3

�
#x þ eGG3

1F3

�
� eGG3

2

�
#y

i
:

ðA:25Þ
Appendix B. Analytical nested grid transformation

Here we develop the analytical representation of the mapping function for the nested grid simulation in

Section 3.1. We begin by defining d0x :¼ ox=ox that is, in general, the analytic limit of dxDx�1. By design of
the experiment, the physical-grid-increment function dxðt; xÞ is a translating step function so one anticipates

d0xðt; xÞ ¼ c pf � ðp � 1Þ Hðx½ � xLðtÞÞ � Hðx� xRðtÞÞ�g; ðB:1Þ

where HðsÞ is the Heaviside distribution, parameter p is the ratio of the outer (coarse) and inner (high

resolution) d0x, and c is the normalization factor assuring that the physical and transformed domains are of

equal size. The functions xL and xR represent the left and right endpoints of the transformed interval of

enhanced resolution, respectively. In the physical domain, we assume that this interval corresponds to
½xL ¼ xd � l; xd þ l ¼ xR� where xd ¼ xdðtÞ gives the location of the center of the forcing disturbance and l is
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the half-width of the interval. The speed at which the interval translates (in physical coordinates) is uniform

and is given by dxd=dt :¼ _xxd . Given the forcing used in Section 3.1, zsðt; xdðtÞÞ always gives the minimum

value of zs, and _xxd ¼ 2pL=T cosð2pt=T Þ.
In order to determine the value of c, as well as the length of the high-resolution interval in transformed

coordinates, denoted as 2l, we integrate the definition of d0x

xðxÞ ¼ �xext þ
Z x

�xext

d0s ds: ðB:2Þ

Here �xext denotes the endpoints of the computational domain in either physical or transformed coordi-
nates, and s is a dummy integration variable. Setting: (i) x ¼ xL, (ii) and then x ¼ xR, (iii) substituting each

into (B.2), and (iv) subtracting the two piecewise integrated equations yields the result l ¼ l=c. Next, we set

x ¼ xext and integrate (B.2) to find c ¼ xext=ð2xext � lÞ. These last two relationships are solved to find

c ¼ ðp � 1Þlþ xext
pxext

; ðB:3Þ
l ¼ plxext
ðp � 1Þlþ xext

: ðB:4Þ

By integrating (B.2) to any point in ½xL; xR� and then taking the partial derivative with respect to t, it follows
that the speed of propagation of the forcing disturbance and inner grid in transformed coordinates is

oxd=ot ¼ _xxd=ðpcÞ. This completes the construction of an analytical solution for d0x.
Finally we demonstrate that (B.1) is also the exact solution to the mesh-continuity Eq. (13) by direct

substitution and differentiation. Assuming U ¼ UðtÞ (i.e., U is uniform in x), and noting that

oHðsÞ=os ¼ dDðsÞ where dD is the Dirac delta distribution, we find the divergence term of (13) is:

oUd0x
ox

¼ U
od0x
ox

¼ �Uðp � 1Þc½dDðx� xLÞ � dDðx� xRÞ�: ðB:5Þ

The transient term in (13) is evaluated in similar fashion noting that xL; xR are ‘‘timelike’’, e.g.,

oHðx� xLÞ=ot ¼ �dDðx� xLÞoxL=ot. Thus:

od0x
ot

¼ ððp � 1Þ=pÞ _xxd ½dDðx� xLÞ � dDðx� xRÞ�: ðB:6Þ

Comparison of (13), (B.5), and (B.6) immediately leads to the result that UðtðtÞÞ ¼ _xxd=ðpcÞ ¼ b _xxd where

b ¼ xext=½xext þ ðp � 1Þl�: ðB:7Þ

For the doubly enhanced resolution case discussed in Section 3.1; p ¼ 2, l ¼ 500 km, and xext ¼ 2500 km.

This yields c ¼ 3=5, l ¼ 833:33 . . . km (normalized value ¼ 1=6), and b ¼ 5=6. The location of the

moving nested grid may be determined by integrating (B.2), e.g., at 48 h, xL ¼ �xext þ
ðxL þ xextÞ=ð2cÞ ¼ �2083:33 . . . km (normalized value ¼ �5=12). These values are in perfect agreement with

Fig. 3.
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